

"Disease-relevant" to disease model: how FlyBase can help you investigate human disease in Drosophila

Victoria Jenkins Biocurator, FlyBase

Boston Area Drosophila Meeting Boston University June 11, 2020

disease-relevant

disease model

l(2)gl and planar cell polarity

cancer, epithelial, LLGL-related

What is a disease model?

variant/allele
in defined
gene(s)

chemical or anatomical treatment

Parkinson-like

disease, toxin-induced

environmental interaction

P. aeruginosa infection

Werner syndrome

kidney disease

diabetes mellitus, insulin-dependent, IPC-ablation models high-sugar diet, obesity

QuickSearch

Human Disease Protein Domains Gene Groups Pathways GO Data Class

Search FlyBase Homologs GAL4 etc Expression Phenotype References

Search using a disease name/ID/synonym, or a human or fly gene symbol/ID:

Search

Enter text: heart disease

Alternatively, browse all Human Disease Model reports

Note: Wild cards (*) can be added to your search term

What do papers defining new Drosophila disease models based on genes tend to do?

General Information	
Symbol	Dmel\CG4836
Name	
Feature Type	protein_coding_gene
Gene Model Status	Current
Gene Snapshot	Insufficient genetic data

find human gene(s) and variant(s) associated with patient phenotype find Drosophila orthologue, select existing alleles or generate novel ones

define relevant phenotype and quantify it

modify phenotype with other genes or treatment

How do model organism researchers pick a disease gene to study?

How do model organism researchers find clinical collaborators for new disease model studies?

Undiagnosed

Can I develop a novel disease model in Drosophila without a clinical collaborator?
Where do I start?

OMIM® omim.org

Online Mendelian Inheritance in Man®

An Online Catalog of Human Genes and Genetic Disorders

NUCLEAR RECEPTOR SUBFAMILY 2, GROUP F, MEMBER 2; NR2F2

HGNC Approved Gene Symbol: NR2F2

CONGENITAL HEART DEFECTS, MULTIPLE TYPES, 4; CHTD4

A number sign (#) is used with this entry because of evidence that multiple types of congenital heart defects (CHTD4) are caused by heterozygous mutation in the NR2F2 gene (107773) on chromosome 15q26.

▼ Description

The multiple types of congenital heart defects observed in CHTD4 include atrial, ventricular, and atrioventricular septal defects, double-outlet right ventricle, tetralogy of Fallot, hypoplastic left heart syndrome, aortic stenosis, and coarctation of the aorta. Intrafamilial variability and incomplete penetrance has been reported (Al Turki et al., 2014; Qiao et al., 2018). Some patients exhibit syndromic features such as developmental delay, congenital diaphragmatic hernia, and severe gastroesophageal reflux (High et al., 2016; Upadia et al., 2018).

46,XX SEX REVERSAL 5; SRXX5

A number sign (#) is used with this entry because of evidence that 46,XX sex reversal-5 (SRXX5) is caused by heterozygous mutation in the NR2F2 gene (107773) on chromosome 15q26.

▼ Description

SRXX5 is characterized by genital virilization in 46,XX individuals, associated with congenital heart disease and variable somatic anomalies including blepharophimosisptosis-epicanthus inversus syndrome (BPES) and congenital diaphragmatic hernia (Bashamboo et al., 2018).

How can I learn about a disease gene's fly homolog(s)?

General Informati	on
Symbol	Dmel\svp
Name	seven up

General Information	on
Symbol	Dmel\svp
Name	seven up

Report Sections ?

Expression Data

Expression Compare Ortholog Genes

General Informati	on
Symbol	Dmel\svp
Name	seven up

Homo sapiens (Human) (4)			
Species\Gene Symbol	Score	Best Score	Best Reverse Score
Hsap\NR2F2	10 of 15	Yes	Yes
Поартипата	NCBI		

NUCLEAR RECEPTOR SUBFAMILY 2, GROUP F,

MEMBER 1; NR2F1

Location	Phenotype	Phenotype MIM number	Inheritance	Phenotype mapping key
5q15	Bosch-Boonstra-Schaaf optic atrophy syndrome	615722	AD	3

General Information	on	
Symbol	Dmel\svp	
Name	seven up	

 ☐ Stocks (1)

 Bloomington
 77959
 y¹ w⁺; PBac{UAS-hNR2F1.B}VK00037/SM6a

Celniker and Bellen, 2017-, A comprehensive human cDNA library for functional gene replacement in flies. A comprehensive human cDNA library for functional gene replacement in flies. [FBrf0237477]

What disease-associated variants have been found in human patients? How do they translate to flies?

Title

Gene-Phenotype Relationships

Text

Cloning and Expression

Mapping

Gene Function

Cytogenetics

Molecular Genetics

Animal Model

Allelic Variants

Table View

References

Contributors

Creation Date

Edit History

NUCLEAR RECEPTOR SUBFAMILY 2, GROUP F, MEMBER 2; NR2F2

Allelic Variants (9 Selected Examples):

All ClinVar Variants

Number A	Phenotype	Mutation	SNP	gnomA	ClinVar
.0001	CONGENITAL HEART DEFECTS, MULTIPLE TYPES, 4	NR2F2, SER341TYR	rs587777371	-	RCV000116199
.0002	CONGENITAL HEART DEFECTS, MULTIPLE TYPES, 4	NR2F2, ASN205ILE	rs587777372	-	RCV000116200
.0003	CONGENITAL HEART DEFECTS, MULTIPLE TYPES, 4	NR2F2, 3-BP DUP, GLN75	rs780808943	-	RCV000116201
.0004	CONGENITAL HEART DEFECTS, MULTIPLE TYPES, 4	NR2F2, IVS2, G-A, +1	rs587777374	-	RCV000116202
.0005	CONGENITAL HEART DEFECTS, MULTIPLE TYPES, 4	NR2F2, 7-BP DEL, NT92	-	_	-
.0006	CONGENITAL HEART DEFECTS, MULTIPLE TYPES, 4	NR2F2, 1-BP DUP, 856G	-	(E)	-
.0007	CONGENITAL HEART DEFECTS, MULTIPLE TYPES, 4	NR2F2, GLY83TER	-	-	-
.0008	46,XX SEX REVERSAL 5	NR2F2, 7-BP DEL, NT97	2	-	-
.0009	46,XX SEX REVERSAL 5	NR2F2, 7-BP DEL, NT103	9 4 (-	-

How do I alert FlyBase to my new model while completing Fast-Track Your Paper (FTYP)?

A few relevant resources

flybase.org

omim.org

fgr.hms.harvard.edu

alliancegenome.org

uniprot.org

www.ncbi.nlm.nih.gov/clinvar

Thank you!

Julie Agapite

Giulia Antonazzo

Helen Attrill

Kris Broll

Lynn Crosby

Gil Dos Santos

Kathleen Falls

The FlyBase Consortium:

Norbert Perrimon (PI, Harvard Univ.)

Susan Russo Gelbart (PD, Harvard Univ.)

Phani Garapati Josh Goodman Sian Gramates Victoria Jenkins Aoife Larkin Ian Longden TyAnna Lovato Thomas Kaufman (co-PI, Indiana Univ.) Brian Calvi (co-PI, Indiana Univ.) Richard Cripps (co-PI, Univ. of NM) Nick Brown (co-PI, Univ. of Cambridge)

Steven Marygold
Bev Matthews
Alex McLachlan
Gillian Millburn
Arzu Ozturk-Colak
Clare Pilgrim
Victor Strelets

Carol Sutherland
Chris Tabone
Jim Thurmond
Vitor Trovisco
Pinglei Zhou
Mark Zytkovicz

FlyBase is supported by a grant from the NHGRI (NIH #U41 HG000739), the British Medical Research Council (#MR/N030117/1), and FlyBase Users all over the world.

Extra thanks to Hugo Bellen, Shinya Yamamoto, and everyone at the UDN for their trailblazing work in this field.